

Cleanship documentation

Contents:

	Cleanship documentation

	Basics

	Features

	Usage
	Setup
	Setup postgres DBMS with geoextension

	Setup python virtualenv

	Init codebase

	Configure instance

	Assign users to groups

	Klarschiff migration
	Preparations

	Import Users

	Import Categories

	Import Issues

	Import Comments

	Import Feedback

	Concepts
	Status

	Development

	Glossary

	Indices and tables

[image: Build Status] [https://travis-ci.org/Matthias84/cleanship] [image: Coverage Status] [https://coveralls.io/github/Matthias84/cleanship?branch=master] [image: DOCs Status] [https://cleanship.readthedocs.io/en/latest/?badge=latest]

Cleanship is a citizen participation (Bürgerbeteiligung) / complaints &
suggestion management (Anliegenmanagement) / … online platform that
allows you to submit issues about the public infrastructure. The local
administration will then review your note and the solution process is
public visible.

Basics

It is the successor of Klarschiff, a platform where citizens report problems / ideas concerning public infrastructure.
The local administration will then review your note and the solution process is public visible.

The code is Python3 using the Django 2 framework and bootstrap4
webfrontend toolkit.

Warning

Currently alpha , so expect that we will break your installation / data / modules / … !

Migrations will cause data lost!

Note

Currently we port only existing features, while avoiding old bottlenecks. New features will be introduced starting with version 0.3.
New features will be introduced starting with version 0.3 (*IX*) [https://github.com/Matthias84/cleanship/milestones]

Note

	This version is a preview with a lot of limitations:

	
	frontend UI not polished

	read-only API

	some performance issues

	hardcoded settings

Features

	issues with georeference

	groups to maintain / delegate issues

	staff frontend (office)

	admin backend

	API compatible with CitySDK

	import Klarschiff legacy data

[image: admin webinterface showing details of a opened issue]
[image: office webinterface showing details of a opened issue]

Usage

	start python3 manage.py runserver --settings cleanship.settings.local

	enter localhost:8000/admin to maintain issues

	enter localhost:8000/office for staff backoffice

	enter localhost:8000/citysdk for REST API

	enter localhost:8000/feed for GeoRSS feed

Setup

On Linux you need to follow this steps to get a working instance

Setup postgres DBMS with geoextension

sudo apt install pgadmin3 postgresql postgresql-10-postgis-2.4 postgresql-10-postgis-scripts
sudo -u postgres psql

CREATE USER cleanship WITH PASSWORD 'mysecretpass';
CREATE DATABASE cleanship OWNER cleanship;
ALTER ROLE cleanship CREATEDB SUPERUSER; /*setting up test-dbs with GIS extension requires high privileges)*/

You quit with ‘q’.
Now work on specific ‘cleanship’ DB:

psql cleanship

CREATE EXTENSION postgis;

Setup python virtualenv

sudo apt install python3-dev libpq-dev binutils libproj-dev gdal-bin
mkvirtualenv -p /usr/bin/python3 cleanship
workon cleanship

Init codebase

git clone cleanship
pip install -R requirements/base.txt (dev.txt for contributing)

Configure instance

	cp /cleanship/settings/example.py /cleanship/settings/local.py

	Adapt your settings in /cleanship/settings/local.py

	Apply DB tables with
python3 manage.py migrate --settings cleanship.settings.local

	Gather static assets to ./static
python3 manage.py collectstatic --settings cleanship.settings.local

	Test startup with
python3 manage.py runserver --settings cleanship.settings.local

	Create first admin user with
python3 manage.py createsuperuser --settings cleanship.settings.local

	Create /municipality_area.json which contains the outer border
as polygon in CRS:4326 (e.g. of
Rostock [https://www.opendata-hro.de/dataset/gemeindeflaeche/]

	Create /eigentumsangaben.geojson which contains disjunct
polygones CRS:25833 with char field eigentumsangabe about
landowners

	Perform single tests with e.g.
python3 manage.py test legacy/tests -v 2 --settings cleanship.settings.local

Assign users to groups

Could be done via admin frontend or programmatically via python shell

from common.models import User, Group
myself = User.objects.get(username='test')
group = Group.objects.get(name='a group')')
group = Group.objects.get(name='a group')')
group.user_set.add(myself)
group.save()

Klarschiff migration

You can transfer your existing issues from Klarschiff (tested v1.9) to
cleanship including issues, categories, groups. We highly recommend a
fresh cleanship setup to avoid troubles!

This migration is a more complex process and will take some time for
tuning till you get the desired results. Please start with a cloned
Klarschiff copy to proceed step by step:

	import categories - create the ideas / problems / tipps hierachy

	import issues - create issue with all details and creates user groups

	export old user details and manually merge them

	import users - create unified user that are referenced

	import comments

	import feedback

The order of the steps is essential, as e.g. comments refer users, issues refer categories, … .

When you have a working mapping and reproducible import steps, you can run all steps in the right order, using
python3 manage.py import --settings cleanship.settings.local.

Preparations

The following instructions are tested to transfer your Klarschiff
content:

	export old data as CSV via this shell-script at your current
Klarschiff DB server

export PGPASSWORD="mypass"
psql -h localhost -d klarschiff -U admin -Atc "select tablename from pg_tables" |\
 while read TBL;
 do if [[$TBL == *"klarschiff_"*]]; then psql -h localhost -d klarschiff -U admin -c "COPY $TBL TO STDOUT WITH (FORMAT CSV, HEADER);" > $TBL.csv
 fi done

	copy all full size photos to /media directory:
cp /srv/www/klarschiff/static/*_gross_*.jpg ./media

Import Users

	create list of legacy user details:
python3 manage.py exportLegacyUsers --settings cleanship.settings.local

	Use the resulting users.txt, which contains of 3 separated blocks (full names, emails, usernames) of all of your Klarschiff users, to manually create a new mapping file called users.csv.
It will be used to create the listed users in the next step and needs to contain the following fields:

You need to fill the lines using the information from the txt listing and maybe your Klarschiff administration interface.
To merge a user from multiple old names, just add dublicated lines.
This mapping is nessesary, to deal with Klarschiff different legacy user references when importing users / comments / feedback / edit history.
The goal is to normalize old user datasets (encoding, old migration artifacts, ..) and match the new user-id (lowercase username) against your LDAP user-ids.
You can also re-arrange users to the groups.

	Create users using this mapping file using python3 manage.py import --users --settings cleanship.settings.local

Import Categories

Import all categories: python3 manage.py import --categories --settings cleanship.settings.local

Import Issues

Note

	The import skips some checks to improve performance:

	
	is in boundary polygon

	updating location description

	updating landowner

	Start full import via
python3 manage.py import --issues --settings cleanship.settings.local

	Import will take only a few minutes

Import Comments

Import all comments python3 manage.py import --comments --settings cleanship.settings.local.

With the first runs, you will noticed some warnings about non-existing users, which we can’t find in the old_fullname mapping.
You will need to find / add them the user mapping file, and run the user import again!

Import Feedback

Import all comments python3 manage.py import --feedback --settings cleanship.settings.local.

With the first runs, you will noticed some warnings about non-existing users, which we can’t find in the email mapping.
You will need to find / add them the user mapping file, and run the user import again!
There are also Feedback with multiple, or no recipent, which don’t need further attention.

Concepts

Cleanship focus to be a enterprise-grade selfhosted solution for the
public administrations. so it integrates in your existing IT and scales
for huge amount of users and notes. You can receive notes with
geolocation easily and maintain this issues to find a solution to this
note step-by-step.

	LDAP support

	multilanguage

	scale with huge amount of issues (>40k tested so far)

	history and logging

	open API following CitySDK protocoll

To get a basic understanding of the internals, you might have a look at
the base object definitions:

	issue - problem / idea / tipp for a location, submitted by
external or interal authors. e.g. a pothole within a specific street.
Focus is the reported damage, not the solution itself. It’s allways
assigned to a group of a organisation

	category - a 3 level categorisation by type (problem / idea /
tipp), main-category and sub-category e.g. problem - waste - bulky
refuse

	role - a overall qualification for a user e.g. admin, editors,
field service

	group - a organisation unit of multiple users e.g. civil
engineering office

	user - a member of a organsiation

The django project is splitted in different apps focussing on single
aspects:

	common - general aspects esp. shared models, admin frontend

	legacy - compatibility features to migrate from old predecessor
project Klarschiff

	office - internal frontend for staff

	citysdk - CitySDK API for public frontend / 3rd party apps & platforms

Status

A issue has a status which indicates it’s current progress and which transition can trigger various actions in detail.

[image: digraph G { subgraph cluster_status{ label="status"; node [shape=box]; submitted -> review [label="email verification"]; review -> wip wip -> solved wip -> impossible; wip -> dublicate; impossible dublicate submitted -> "(removed)"[label="garbage collection"]; submitted -> dublicate; } subgraph cluster_public{ label="published" node [shape=box]; submitted -> invisible review -> visible [label="at map" style=dashed] wip -> visible dublicate -> invisible solved -> invisible [label="timeout" style=dashed] impossible -> invisible [label="timeout" style=dashed] color=lightgrey } start [shape=Mdiamond]; end [shape=Msquare]; start -> submitted }]

	submitted - User submitted issue, but didn’t verified his email yet. Issue will be removed, if user don’t open confirmation link.

	review - User verified his email, but no internal group assigned and no person did a review of the issue content yet. Issue displayed on the map, but details and photo stay hidden.

	work in progress (wip) - A internal group is assigned and working on the issue. Details and photo become public.

	solved - Final state, the core issue could be solved. An explaination is in status text.

	impossible - Final state, the core issue couldn’t be solved. An explaination is in status text.

Development

Please see readme.md [https://github.com/Matthias84/cleanship/] and CONTRIBUTING.md [https://github.com/Matthias84/cleanship/blob/master/CONTRIBUTING.md]!

Glossary

	CitySDK

	A REST like API which CitySDK participation [https://www.citysdk.eu/citysdk-toolkit/using-the-apis/open311-api/] component was implemented at Klarschiff.
It is a updated version of the Open311 [https://www.open311.org/] protocol, by exteding some core concepts.
Klarschiff also added even more features, are completely covered here [https://github.com/bfpi/klarschiff-citysdk].

	Klarschiff

	Is the previous (legacy) software suite for civic participation management.
It was splitted in a public and internal frontend [https://github.com/bfpi/klarschiff-field_service], both for mobile and desktop users.
The database was managed by a backend [https://github.com/bfpi/klarschiff-backend] component, which offered a CitySDK API to the frontends.
See Wikipedia (Klarschiff) [https://de.wikipedia.org/wiki/Klarschiff]
Cleanship replaces everything below the public frontends.

Indices and tables

	Index

	Module Index

	Search Page

Index

 C
 | K

C

 	
 	CitySDK

K

 	
 	Klarschiff

Klarschiff migration

You can transfer your existing issues from Klarschiff (tested v1.9) to
cleanship including issues, categories, groups. We highly recommend a
fresh cleanship setup to avoid troubles!

This migration is a more complex process and will take some time for
tuning till you get the desired results. Please start with a cloned
Klarschiff copy to proceed step by step:

	import categories - create the ideas / problems / tipps hierachy

	import issues - create issue with all details and creates user groups

	export old user details and manually merge them

	import users - create unified user that are referenced

	import comments

	import feedback

The order of the steps is essential, as e.g. comments refer users, issues refer categories, … .

When you have a working mapping and reproducible import steps, you can run all steps in the right order, using
python3 manage.py import --settings cleanship.settings.local.

Preparations

The following instructions are tested to transfer your Klarschiff
content:

	export old data as CSV via this shell-script at your current
Klarschiff DB server

export PGPASSWORD="mypass"
psql -h localhost -d klarschiff -U admin -Atc "select tablename from pg_tables" |\
 while read TBL;
 do if [[$TBL == *"klarschiff_"*]]; then psql -h localhost -d klarschiff -U admin -c "COPY $TBL TO STDOUT WITH (FORMAT CSV, HEADER);" > $TBL.csv
 fi done

	copy all full size photos to /media directory:
cp /srv/www/klarschiff/static/*_gross_*.jpg ./media

Import Users

	create list of legacy user details:
python3 manage.py exportLegacyUsers --settings cleanship.settings.local

	Use the resulting users.txt, which contains of 3 separated blocks (full names, emails, usernames) of all of your Klarschiff users, to manually create a new mapping file called users.csv.
It will be used to create the listed users in the next step and needs to contain the following fields:

You need to fill the lines using the information from the txt listing and maybe your Klarschiff administration interface.
To merge a user from multiple old names, just add dublicated lines.
This mapping is nessesary, to deal with Klarschiff different legacy user references when importing users / comments / feedback / edit history.
The goal is to normalize old user datasets (encoding, old migration artifacts, ..) and match the new user-id (lowercase username) against your LDAP user-ids.
You can also re-arrange users to the groups.

	Create users using this mapping file using python3 manage.py import --users --settings cleanship.settings.local

Import Categories

Import all categories: python3 manage.py import --categories --settings cleanship.settings.local

Import Issues

Note

	The import skips some checks to improve performance:

	
	is in boundary polygon

	updating location description

	updating landowner

	Start full import via
python3 manage.py import --issues --settings cleanship.settings.local

	Import will take only a few minutes

Import Comments

Import all comments python3 manage.py import --comments --settings cleanship.settings.local.

With the first runs, you will noticed some warnings about non-existing users, which we can’t find in the old_fullname mapping.
You will need to find / add them the user mapping file, and run the user import again!

Import Feedback

Import all comments python3 manage.py import --feedback --settings cleanship.settings.local.

With the first runs, you will noticed some warnings about non-existing users, which we can’t find in the email mapping.
You will need to find / add them the user mapping file, and run the user import again!
There are also Feedback with multiple, or no recipent, which don’t need further attention.

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Cleanship documentation

 		
 Basics

 		
 Features

 		
 Usage

 		
 Setup

 		
 Setup postgres DBMS with geoextension

 		
 Setup python virtualenv

 		
 Init codebase

 		
 Configure instance

 		
 Assign users to groups

 		
 Klarschiff migration

 		
 Preparations

 		
 Import Users

 		
 Import Categories

 		
 Import Issues

 		
 Import Comments

 		
 Import Feedback

 		
 Concepts

 		
 Status

 		
 Development

 		
 Glossary

 		
 Indices and tables

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_images/graphviz-5dbecfcd663ebfbef0890be1925252695459c3ee.png
$ status

submitted]
[email verification\garbage collection
review (removed)
wip
dublicate solved impossible

D 1
Nf:m fimeout
M
N

invisible

visible

_static/comment-bright.png

